

PHOTOCOUPLER PS2765-1

HIGH ISOLATION VOLTAGE AC INPUT RESPONSE TYPE 4-PIN SOP PHOTOCOUPLER

-NEPOC[™] Series-

DESCRIPTION

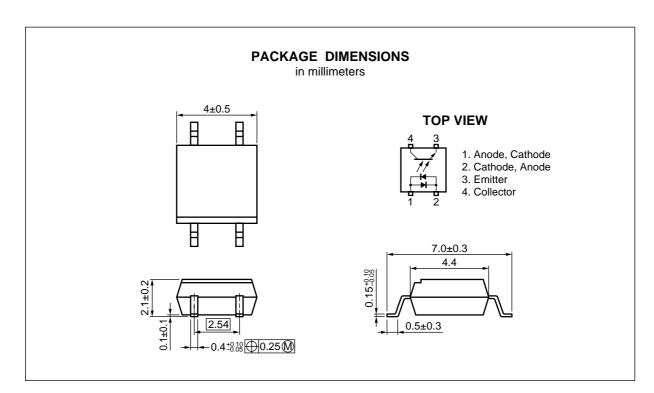
The PS2765-1 is an optically coupled isolator containing GaAs light emitting diodes and an NPN silicon phototransistor.

This package is mounted in a plastic SOP (Small Outline Package) for high density applications.

The package has shield effect to cut off ambient light.

* FEATURES

- Isolation distance (0.4 mm MIN.)
- · AC input response
- · SOP (Small Outline Package) type
- High isolation voltage (BV = 3 750 Vr.m.s.)
- High-speed switching ($t_r = 4 \mu s$ TYP., $t_f = 5 \mu s$ TYP.)
- · Ordering number of taping product: PS2765-1-F3, F4
- UL approved: File No. E72422 (S)
- BSI approved: No. 8436/8437


APPLICATIONS

- · Hybrid IC
- · Programmable logic controllers
- Power supply

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

*

PHOTOCOUPLER CONSTRUCTION

Parameter	Unit (MIN.)			
Air Distance	5 mm			
Creepage Distance	5 mm			
Isolation Distance	0.4 mm			

★ ORDERING INFORMATION

Part Number	Package	Packing Style	Application Part Number*1
PS2765-1	4-pin SOP	Magazine case 100 pcs	PS2765-1
PS2765-1-F3		Embossed Tape 3 500 pcs/reel	
PS2765-1-F4			

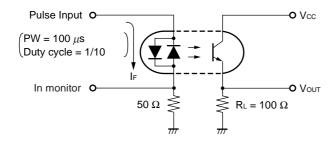
^{*1} For the application of the Safety Standard, following part number should be used.

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, unless otherwise specified)

Parameter		Symbol	Ratings	Unit
Diode	Forward Current (DC)	lF	± 50	mA
	Power Dissipation	PD	80	mW
	Peak Forward Current ¹	IFP	± 1.0	Α
Transistor	Collector to Emitter Voltage	Vceo	40	V
	Emitter to Collector Voltage	VECO	5	V
	Collector Current	Ic	40	mA
	Power Dissipation Derating	∆Pc/°C	1.5	mW/°C
	Power Dissipation	Pc	150	mW
Isolation Voltage ^{*2}		BV	3 750	Vr.m.s.
Operating Ambient Temperature		TA	-40 to +100	°C
Storage Temperature		Tstg	-55 to +150	°C

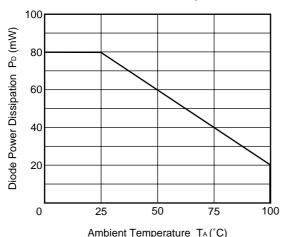
^{*1} PW = 100 μ s, Duty Cycle = 1 %

^{*2} AC voltage for 1 minute at $T_A = 25$ °C, RH = 60 % between input and output

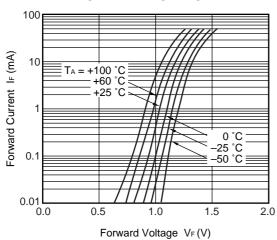

★ ELECTRICAL CHARACTERISTICS (T_A = 25 °C)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Diode	Forward Voltage	VF	$I_F = \pm 5 \text{ mA}$		1.1	1.4	V
	Terminal Capacitance	Ct	V = 0 V, f = 1 MHz		30		pF
Transistor	Collector to Emitter Dark Current	Iceo	IF = 0 mA, VcE = 40 V			100	nA
Coupled	Current Transfer Ratio	CTR	IF = \pm 5 mA, VcE = 5 V	50	100	400	%
	Collector Saturation Voltage	VCE (sat)	$I_F = \pm 10 \text{ mA}, I_C = 2 \text{ mA}$			0.3	V
	Isolation Resistance	Rı-o	Vi-o = 1 kVDC	10 ¹¹			Ω
	Isolation Capacitance	C _{I-O}	V = 0 V, f = 1 MHz		0.4		pF
	Rise Time ²	tr	$Vcc = 5 \text{ V}, \text{ Ic} = 2 \text{ mA}, \text{ RL} = 100 \Omega$		4		μs
	Fall Time ^{*2}	tf			5		

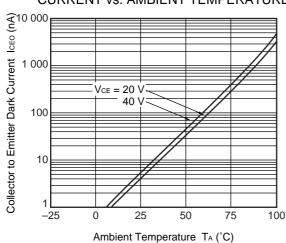
★ *1 CTR rank

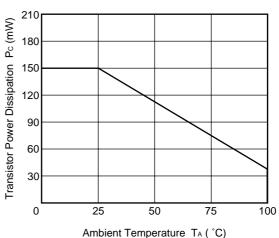

N: 50 to 400 (%)

*2 Test circuit for switching time

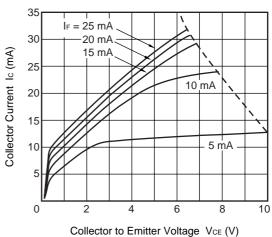


★ TYPICAL CHARACTERISTICS (TA = 25 °C, unless otherwise specified)

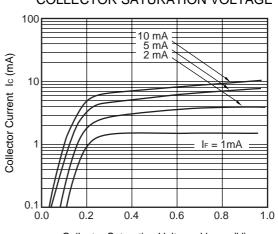

DIODE POWER DISSIPATION vs. AMBIENT TEMPERATURE


FORWARD CURRENT vs. FORWARD VOLTAGE

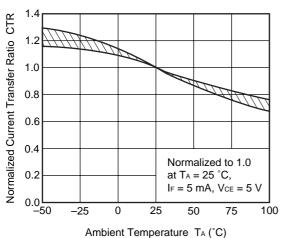
COLLECTOR TO EMITTER DARK CURRENT vs. AMBIENT TEMPERATURE

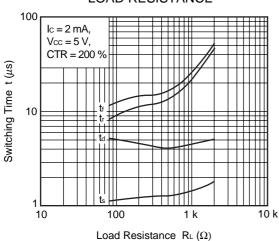


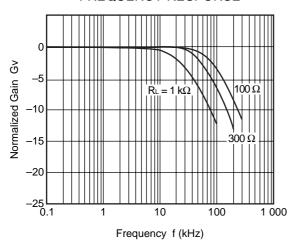
TRANSISTOR POWER DISSIPATION vs. AMBIENT TEMPERATURE



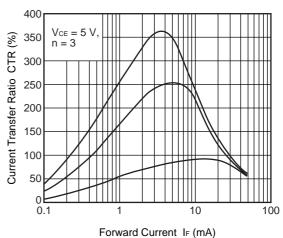
COLLECTOR CURRENT vs.


COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE

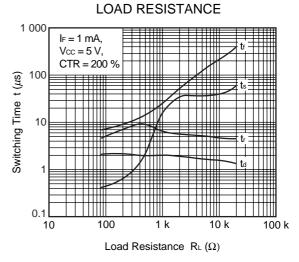

COLLECTOR CURRENT vs. COLLECTOR SATURATION VOLTAGE


NORMALIZED CURRENT TRANSFER RATIO vs. AMBIENT TEMPERATURE

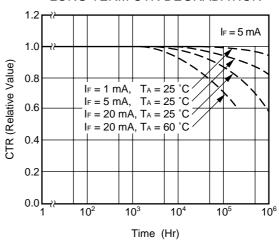
SWITCHING TIME vs. LOAD RESISTANCE

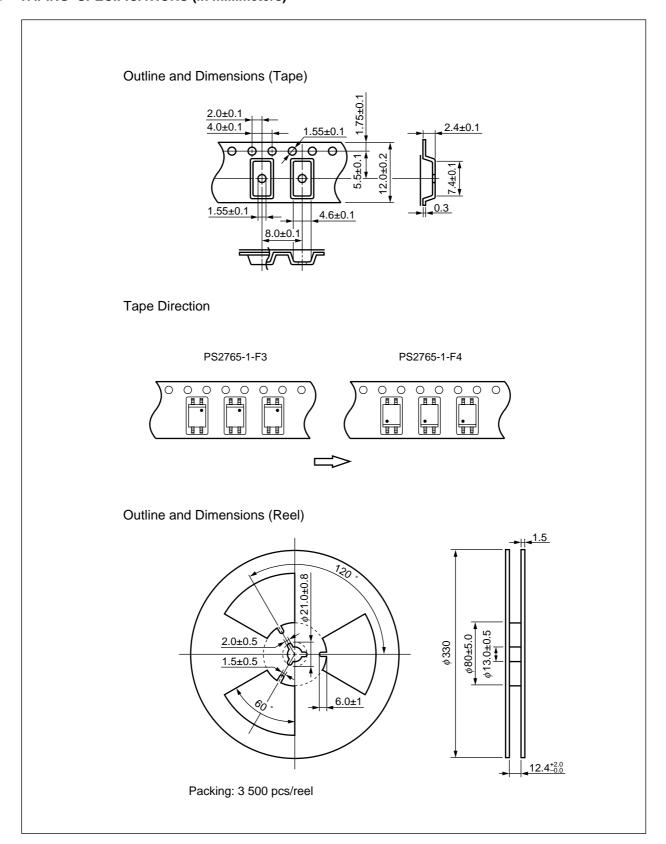


FREQUENCY RESPONSE



Remark The graphs indicate nominal characteristics.


CURRENT TRANSFER RATIO vs. FORWARD CURRENT


SWITCHING TIME vs.

LONG TERM CTR DEGRADATION

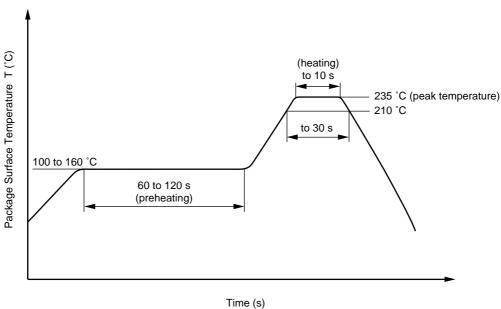
★ TAPING SPECIFICATIONS (in millimeters)

★ NOTES ON HANDLING

1. Recommended soldering conditions

(1) Infrared reflow soldering

Peak reflow temperature
 235 °C or below (package surface temperature)


• Time of temperature higher than 210 °C 30 seconds or less

• Number of reflows Thre

• Flux Rosin flux containing small amount of chlorine (The flux with a

maximum chlorine content of 0.2 Wt % is recommended.)

Recommended Temperature Profile of Infrared Reflow

Time (

(2) Dip soldering

• Temperature 260 °C or below (molten solder temperature)

• Time 10 seconds or less

Number of times
 One (Allowed to be dipped in solder including plastic mold portion.)

• Flux Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of

0.2 Wt % is recommended.)

(3) Cautions

Fluxes

Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

2. Cautions regarding noise

Be aware that when voltage is applied suddenly between the photocoupler's input and output or between corrector-emitters at startup, the output side may enter the on state, even if the voltage is within the absolute maximum ratings.

NEC PS2765-1

[MEMO]

[MEMO]

NEC PS2765-1

[MEMO]

CAUTION

Within this device there exists GaAs (Gallium Arsenide) material which is a harmful substance if ingested. Please do not under any circumstances break the hermetic seal.

NEPOC is a trademark of **NEC** Corporation.

- The information in this document is current as of July, 2000. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
 books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
 and/or types are available in every country. Please check with an NEC sales representative for
 availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4